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This paper introduces DANGLE, a new algorithm that employs Bayesian inference to estimate the likeli-
hood of all possible values of the backbone dihedral angles / and w for each residue in a query protein,
based on observed chemical shifts and the conformational preferences of each amino acid type. The
method provides robust estimates of / and w within realistic boundary ranges, an indication of the
degeneracy in the relationship between shift measurements and conformation at each site, and faithful
secondary structure state assignments. When a simple degeneracy-based filtering procedure is applied,
DANGLE offers an ideal compromise between accuracy and coverage when compared with other shift-
based dihedral angle prediction methods. In addition, per residue analysis of shift/structure degeneracy
has potential to be a useful new approach for studying the properties of unfolded proteins, with sufficient
sensitivity to identify regions of residual structure in the acid denatured state of apomyoglobin.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Early solution state NMR studies demonstrated that resonance
frequencies are profoundly influenced by the local environments
created by protein secondary, tertiary and quaternary structure
[1]. Although isotropic chemical shift measurements promise to re-
veal much, their dependence on structure is not straightforward,
complicated by the influence of many atoms in the protein system
on the electronic environment around each nucleus. Recent ad-
vances have begun to elucidate the complex relationship between
shift and conformation [2], from low resolution attempts to classify
elements of secondary structure [3–10], through prediction of the
backbone dihedral angles / and w [11–14], to the generation of
high resolution protein structures solely from chemical shift and
primary sequence information [15–20]. Blind determination of full
three dimensional structures is currently restricted to smaller
proteins (<150 amino acids), is less accurate than traditional
NOE-based NMR methods [15–17] and can fail in regions where
backbone chemical shift measurements are not available, for
example due to the effects of conformational exchange broadening
in exposed loops. Such gaps can be addressed by additional model-
ling procedures [20], but the resolution of de novo methods is also
limited by the accuracy of algorithms for predicting backbone
dihedral angles from chemical shift measurements [15–17] and
for back-calculating shifts from atomic coordinates [21,22].
ll rights reserved.
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Conventional structure calculation protocols typically combine
inter-atomic distance measurements with secondary structure
and dihedral angle restraints, aiming to improve the convergence
and resolution of the final ensemble. If sufficient long-range dis-
tance constraints have been collected, the additional information
contributed by dihedral angle restraints may be small [23]. How-
ever, when experimental data is sparse or distance restraints are
highly ambiguous (e.g. for solid state NMR studies), shift-based
dihedral angle restraints have been shown to increase the precision
and accuracy of the resulting structures [24]. Constraints that can
define local backbone conformations therefore remain valuable in
many day-to-day applications. In addition, the main shift-based
structure determination methods, CHESHIRE [15], CS-ROSETTA
[16] and CS23D [17], all construct tertiary folds using fragments
that are initially identified using dihedral angle prediction
algorithms.

The development of methods for using chemical shift data to
predict protein conformation has been facilitated by access to
extensive databases of experimental shift measurements [25,26]
and of protein structures [27,28]. TALOS, the most popular tech-
nique for estimating dihedral angles, searches for tripeptide frag-
ments with amino acid sequence and secondary shift patterns
that are similar to the query protein, assuming that close matches
from a database will possess related backbone conformations [11].
The PREDITOR approach supplements a fragment-matching algo-
rithm with information derived from homologous protein struc-
tures [12,13]. Both methods use Ramachandran plots [29] to
analyse the backbone conformations of the 10 closest matching
fragments, deriving shift-based predictions of / and w from the
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mean values of hits within the major cluster, while ignoring contri-
butions from outliers. These procedures bias the final predictions
towards regions of Ramachandran space that are highly populated.
In our hands both TALOS and PREDITOR are regularly inaccurate for
residues in non-canonical structures, such as 310 helices and con-
formations with positive values of /, in part because neither ap-
proach can reliably handle glycine or residues that precede
prolines. The recently updated TALOS+ package can make accept-
able estimates for a greater proportion of residues [14], but all
three methods return boundary ranges for / and w that typically
fail to reflect the accuracy of the prediction.

Steric hindrance and electrostatic interactions restrict the sam-
pling of conformational space so that the backbone dihedral angles
measured in protein structures cluster together in distinct regions
of the Ramachandran plot [30]. Densely populated regions corre-
spond to the low energy conformations found in common elements
of secondary structure, most significantly right-handed a-helices,
left-handed aL-turns and extended b-strands. TALOS, TALOS+ and
PREDITOR make scant use of this predefined stereochemistry,
which also dictates that different amino acid types possess distinct
population distributions in Ramachandran space. Analysis of high
resolution X-ray structures has shown that it is convenient to con-
sider these distributions in four classes [31,32]: glycines, prolines,
residues that precede proline, and the most frequently encoun-
tered ‘‘generic” class (Fig. 1A–D).

To address the problems encountered with popular dihedral an-
gle prediction methods, here we introduce the DANGLE (Dihedral
ANgles from Global Likelihood Estimates) algorithm, which uses
Bayesian inference to estimate the likelihood of conformations
throughout Ramachandran space, paying explicit attention to the
population distributions expected for different residue types. We
describe a straightforward method for identifying residues with
chemical shifts that are consistent with multiple conformations.
Filtering out the estimates from such sites yields predictions of /
and w that are more realistic than those made by TALOS, TALOS+
or PREDITOR, with significant improvements for glycine and pre-
proline residues. We also introduce and assess a new tool for
assigning secondary structure states to protein residues by analysis
of conformations in similar database fragments.
2. Experimental

2.1. The fragment and prior data sets

A database of protein structure fragments was compiled using
chemical shift and PDB files for 186 proteins taken from the TALOS
database (version 2007.068.09.07) [11]. The secondary chemical
shifts of 1Ha, 15N, 13C0, 13Ca and 13Cb nuclei were obtained by sub-
tracting sequence-corrected random coil shifts from deposited val-
ues [33,34]. 27,014 five-residue fragments were generated, of
which 772 were discarded due to sequence discrepancies between
the original PDB and chemical shift files. The fragment database
also stores the primary sequence of each pentapeptide, the exper-
imental / and w angles and a three-state classification of the sec-
ondary structure of the central residue. Each residue was assigned
using output from the DSSP program [35]: a-helix, 310 helix and p-
helix states were grouped into the ‘‘H” class; b-bridge and ex-
tended strand states into the ‘‘E” class; and all remaining states
into the ‘‘C” class.

Prior information about experimental backbone conformations
was collated from a data set of 500 high resolution X-ray structures
assembled by Lovell and colleagues [31]. Residues were grouped
into four classes (generic, glycine, proline and pre-proline) and
atoms with B-factors >30 were excluded. Normalised dihedral an-
gle distributions were stored in the form of population frequencies
within 36 � 36 10� square bins spanning all of Ramachandran
space; to ensure that uncommon (/, w) combinations could be
sampled, a small pseudo-count was assigned to each bin before
the experimental populations were introduced.

The fragment database was shown to comprise conformations
that are representative of high-quality crystal structures, as judged
by comparison with the prior data set using pairwise symmetrized
Jensen-Shannon divergence scores [36,37] (see Supplementary
Information for more details).

2.2. The query scatter pattern

After reading in the chemical shift data and amino acid se-
quence of the query protein, DANGLE computes sequence-cor-
rected secondary shifts for all measured 1Ha, 15N, 13C0, 13Ca and
13Cb nuclei [33,34] and then makes dihedral angle predictions for
each residue. First, the fragment database is searched to find close
matches to the shifts and sequence of each five-residue window
along the query polypeptide chain, using a scoring function
adapted from TALOS [11] (see Supplementary Information for
more details). If no chemical shift information is available within
the query window, similar fragments are identified by sequence
alone. For each query window, the 10 lowest scoring matches from
the fragment database define a scatter pattern of (/, w) coordi-
nates, which is transformed into a frequency matrix of
36 � 36 10� bins and then smoothed (see Supplementary Informa-
tion for more details). This contrasts with the approach taken by
TALOS and TALOS+, which use shorter tripeptide segments for frag-
ment matching and different cluster analysis protocols [11,14].

2.3. The posterior probability scoring function

According to Baye’s theorem [38], the posterior probability that
a particular backbone conformation (/, w) can be deduced from a
given query scatter pattern (QSP) is P(/, w|QSP), where:

Pð/;wjQSPÞ / PðQSPj/;wÞ � Pð/;wÞ:

The prior probability P(/, w), defining the chance that the cen-
tral residue in the query window possesses / and w angles within
a particular 10� square bin in Ramachandran space, is estimated
using the four dihedral angle prior distributions described above.

P(QSP|/, w) represents the conditional probability that a confor-
mation within a particular 10� square bin could produce the ob-
served query scatter pattern. To estimate P(QSP|/, w), a set of
‘‘scattergrams” was assembled from shift and sequence informa-
tion in the fragment database. For each occurrence of experimen-
tally determined / and w angles within a particular bin, a
similarity search identified the 10 lowest scoring pentapeptide
matches to construct a scatter pattern distribution for the central
residue; the distributions for each occurrence were then summed
together and the final distribution was normalised. The resulting
scattergram defines the shape of the scatter patterns that can be
produced by conformations from within the bin. Scattergrams
were generated for each of 36 � 36 bins in Ramachandran space.

A query scatter pattern will be representative of an angle lo-
cated within a given 10� square bin if it resembles the scattergram
associated with that bin. DANGLE quantifies the difference be-
tween the query frequency matrix and scattergram distributions
for bin (/, w) using a likelihood ratio known as the Kullback–Lei-
bler divergence [39], DKL(/, w):

DKLð/;wÞ ¼
X
/0

X
w0

Qð/0;w0Þ � ln
Qð/0;w0Þ

Sð/0;w0j/;wÞ

� �
;

where Q(/0, w0) is the value of cell (/0, w0) in the query frequency
matrix and S(/0, w0|/, w) is the value of cell (/0, w0) in the scatter-
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Fig. 1. Ramachandran space distribution plots are shown for generic (A, E, I, M and Q), glycine (B, F, J, N and R), proline (C, G, K, O and S) and pre-proline (D, H, L, P and T) sites
in the 186 proteins that constitute the fragment database. Panels (A–D) are population frequency distributions for reference structure backbone angles, colour coded from
blue (least populous) to red (most populous). Panels (E–H) display population frequency distributions for the angles predicted by DANGLE after filtering out ambiguous sites.
Panels (I–L) display the percentage of predictions of / and w that are both within 30� of their reference angles (A30(/, w)). Panels (M–P) display the mean RMS errors for
predictions of /. Panels (Q–T) display the mean RMS errors for predictions of w. Bins with population 60.2% of the most populous within the plot are shown as white
background. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

M.-S. Cheung et al. / Journal of Magnetic Resonance 202 (2010) 223–233 225
gram matrix associated with bin (/, w). DKL(/, w) is zero if the query
frequency matrix and the current scattergram are a perfect match;
large positive values indicate that the two distributions are highly
dissimilar.

Because DKL(/, w) behaves as an inverse function of similarity,
the conditional probability P(QSP|/, w) is derived using a norma-
lised similarity score:
PðQSPj/;wÞ ¼ expð�DKLð/;wÞÞP
/0
P

w0 expð�DKLð/0;w0ÞÞ
;

such that

X
/

X
w

PðQSPj/;wÞ ¼ 1:
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Finally, B(/, w), the posterior probability score for bin (/, w) is
determined from the equation:

Bð/;wÞ ¼ expð�DKLð/;wÞÞP
/0
P

w0 expð�DKLð/0;w0ÞÞ
� Pð/;wÞ:
2.4. Global likelihood estimate diagrams

A global likelihood estimate (GLE) diagram is assembled from
the B(/, w) values of each bin in Ramachandran space, normalised
with respect to the largest score in the diagram, Bmax. A cluster of
adjacent bins with B(/, w)/Bmax greater than an empirically opti-
mised threshold of 1.5 � 10�5 is designated an ‘‘island”, signifying
a range of similar possible conformations. The island that contains
the Bmax value is termed the principal island. DANGLE determines
the B-weighted angular means of / and w within the principal is-
land and reports these as the prediction of the backbone conforma-
tion (see Supplementary Information for more details). The locus of
10� square bins adjacent to the boundary of the principal island de-
fines upper and lower limits for the predicted values of / and w.
DANGLE can be configured to reject predictions from GLE diagrams
that contain more than a user-defined number of islands; the de-
fault approach is to use estimates from single-island sites only.

2.5. Jury-based predictions of secondary structure class

DANGLE also predicts conformational information at lower res-
olution by attributing a secondary structure class to the query res-
idue. The DSSP-derived secondary structure classifications [35] of
the 10 lowest scoring pentapeptides from a similarity search are
analysed using a simple jury system: if P6 of the fragments are
in the H state, the query residue is assigned to the H (helix) class;
if P6 are in the E state, the E (strand) class is predicted; otherwise,
the C (coil) class is returned.

2.6. Implementation and availability

The DANGLE prediction program and its graphical user interface
(GUI) are coded in Python and tested with Python versions 2.4–2.6.
Both have been publicly released in two forms: as a stand-alone
package (http://dangle.sourceforge.net) and as an integrated tool
within version 2.0 (and above) of the CcpNmr Analysis spectrum
visualisation and assignment program (http://www.ccpn.ac.uk/)
[40]. For details of input and output file formats, see Supplemen-
tary Information. All development procedures were performed
with a machine running SuSe Linux version 10.0 with a 1.6 GHz
AMD processor and 512 MB of memory, on which DANGLE took
2 s per residue to make predictions for a query protein.

2.7. Self-assessment tests and comparison with other algorithms

Self-assessment tests were performed by analysing the 186 pro-
tein entries in the fragment database, omitting the query protein
from the database in each case. A30(/), A30(w) and A30(/, w) denote
the percentage of predictions of /, w and (/, w) pairs, respectively,
that deviate from the structure-derived reference by less than 30�.
Similarly, Arange(/), Arange(w) and Arange(/, w) represent the per-
centage of estimates for which the reference angle lies within the
predicted boundary range. The percentage of predictions of
three-state secondary structure class (H, E or C) that are identical
to the class in the reference structure is represented by A3.

To compare the performance of DANGLE with other algorithms,
we assembled an independent test set of geometric and shift data
for 2870 residues from 29 non-redundant proteins (see Supple-
mentary Information for more details). Two sets of DANGLE output
were investigated: DANG-A, containing predictions for every site,
and DANG-B, retaining predictions from sites that return single-is-
land GLE plots only. Version 2007.068.09.07 of TALOS [11] was as-
sessed in two modes: TALOS-A, representing all predictions made
by the algorithm; and TALOS-B, including only estimates that are
classed as ‘‘good”. Version 1.2009.0618.13 of TALOS+ [14] was
evaluated using two similarly constructed data classes, TPLUS-A
(all) and TPLUS-B (‘‘good” predictions only). The performance of
the PREDITOR server (database version DB1.0, accessed in Septem-
ber 2007) was also judged in two modes: predictions based on shift
and sequence data only (PRED-A); or with additional dihedral an-
gle information from homologous structures (PRED-B) [13]. Values
of / and w were also estimated on the basis of sequence alone
using the Real-SPINE 3.0 server [41].

To study the effects of incorrect referencing, for each of the 29
proteins in the test set the 1Ha, 15N and the entire set of 13C chem-
ical shift values were separately increased or reduced by intervals
of 0.05, 0.5 and 0.2 ppm, respectively; a wide range of offsets was
investigated, so we opted to compare the results using this smaller
test group rather than the full set of 186 proteins.

Five shift-based secondary structure prediction routines were
evaluated, also using the 29 protein test set: the consensus CSI ap-
proach (conCSI) [4]; PSSI (version 2) [5]; psiCSI [6]; PECAN (version
0.1 beta) [7] and TALOS+ [14]. Three-state prediction methods
based on secondary shift differences between 13Ca and 13Cb (DCAB)
[8] and between 13C’ and 13Cb (DCOB) [9] nuclei were also consid-
ered, along with sequence-only prediction results from the Jpred3
web server [42]. For further details about the implementation of
these methods, see Supplementary Information.

The output of DANGLE is illustrated using data for the origin
binding domain of the SV40 T-antigen, using an X-ray structure
(PDB entry 2FUF) [43], a re-calculated solution structure ensemble
from the RECOORD database (1TBD) [28,44], and shifts from the
RefDB database (Accession Number 4127). Chemical shift data for
the acid denatured state of apomyoglobin was taken from BMRB
entry 4676 [45]; the results from DANGLE were compared with
random coil index (RCI) values returned by the PREDITOR server
[17,48].
3. Results and discussion

3.1. Interpretation of GLE diagrams

The DANGLE algorithm operates by searching a database to find
short peptide fragments with local amino acid sequence and chem-
ical shifts that are similar to those of each residue in the query pro-
tein. The / and w backbone dihedral angles of the 10 best matches
for the residue are considered together, defining a ‘‘query scatter
pattern” for comparison with a library of ‘‘scattergram” distribu-
tions, each of which constrains the shape of query scatter patterns
that can be produced by a particular protein backbone conforma-
tion. A systematic comparison across all values of / and w through-
out Ramachandran space is then reported in the form of a grid of
posterior probability scores (B-scores), termed a ‘‘global likelihood
estimate” (GLE) diagram. If the distributions of the query scatter
pattern and the relevant scattergram resemble each other closely,
the B-score will be large; otherwise, its value will be close to zero.
In the GLE diagram, an ‘‘island” describes a cluster of adjacent /
and w values with high B-scores, representing a range of backbone
conformations that the residue is likely to adopt.

Fig. 2 displays examples of typical GLE diagrams obtained for
the origin binding domain (OBD) of the simian virus 40 (SV40)
large T-antigen [43,44]. Residues in elements of regular secondary
structure usually possess a single island, as shown for Tyr-162 (lo-
cated in a b-strand, Fig. 2A) and Ala-169 (in an a-helix, Fig. 2B). The

http://dangle.sourceforge.net
http://www.ccpn.ac.uk/
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islands in both panels are compact, meaning that the experimental
chemical shifts are consistent with a tightly defined set of confor-
mations, leading to dihedral angle estimates that are both accurate
and precise. For example, Tyr-162 has (/, w) values of
(�108�, +122�) in the reference crystal structure [43] and
(�93 ± 5�, +112 ± 2�) in the ensemble of 25 NMR solution struc-
tures [44]. In the corresponding GLE diagram (Fig. 2A), the bin that
contains the largest B-score is centred at (�115�, +125�). DANGLE
estimates backbone dihedral angles by determining B-weighted
mean values for / and w across all bins within the island, which
in this case yields �115� and +128�, respectively, indicating a con-
formation within the bin that contains the highest score. Conserva-
tive upper and lower limits for these predictions are taken from the
locus of 10� square bins adjacent to the island boundary, here dic-
tating ranges of �150� to �90� for / and +100� to +160� for w. The
experimental angles usually fall well within these boundaries.

The GLE diagram for Gly-250 also contains a single island, but in
the positive / region of Ramachandran space, consistent with an
aL-turn conformation (Fig. 2C). According to the NMR ensemble,
the dihedral angles of Gly-250 are close to (+74�, �5�), with stan-
dard deviations of (±78�, ±37�). This is consistent with the elon-
gated shape of the island, which results in a prediction of
(+66�, +18�) within broader boundary ranges of +40� to +110� in
/ and �30� to + 50� in w.

3.2. Number of islands and conformational flexibility

The three islands in the GLE diagram for Val-181 (Fig. 2D) high-
light distinct regions of the (/, w) plot that create secondary shift
patterns similar to those found in the query fragment. The number
of islands reflects the degeneracy of mapping between the query
scatter pattern and scattergram distributions from different loca-
tions in Ramachandran space. Degeneracy of this sort may be acci-
dental, implying that several conformations are capable of
inducing similar electronic environments at multiple sites within
the fragment. Alternatively, degeneracy could be related to an
averaging of chemical shifts due to conformational flexibility. For
Val-181, the former explanation is most likely: in the solution
structure ensemble the standard deviations of / and w are small,
(�65 ± 9�, +158 ± 9�), indicating that the backbone geometry is rel-
atively well defined, so that the residue samples a single conforma-
tion. As is often the case for multi-island plots, the experimental
reference angles lie within the cluster that contains the highest
B-score; the B-weighted mean values of / and w within this prin-
cipal island suggest a conformation of (�74�, +154�), similar to that
found in the NMR ensemble [44].

The SV40 OBD protein is relatively well structured throughout,
and consequently only 22 % of its backbone sites possess multi-is-
land GLE diagrams. To illustrate the effects of more extensive con-
formational flexibility, we also analysed the chemical shifts of
apomyoglobin in a predominantly unfolded denatured state, under
low-salt conditions at pH 2.3 [45]. In this case, 60% of residues pro-
duce GLE plots that contain two or more islands (Fig. 3A), presum-
ably because more nuclei sense time-averaged electronic
environments due to frequent rearrangements of the polypeptide
chain. Five runs of consecutive single-island GLE diagrams were
detected (labelled P–T in Fig. 3), each containing (/, w) values con-
sistent with helix conformations. All five sections detected by
DANGLE correspond to regions previously implicated in residual
helical structure by a wide range of biophysical probes [45].

An alternative chemical shift-based probe of protein flexibility,
the Random Coil Index (RCI) [46–49], appears to be less sensitive to
the presence of these residual structures (Fig. 3B). Four of the five
single-island regions identified by DANGLE correspond to residues
with small RCI values, indicating greater rigidity, but the lowest
RCI scores appear elsewhere in the polypeptide chain. As a result,
when applied to unfolded proteins the RCI approach is likely to
produce both false positives (low scoring regions that correspond
to portions of the polypeptide that are flexible, such as residues
33 to 37) and false negatives (high scores in regions of residual
structure, e.g. 124–126). These discrepancies probably occur be-
cause the RCI method was optimised for folded proteins using
molecular dynamics simulations; it is therefore best suited for
quantifying low amplitude sub-nanosecond motions, correspond-
ing to RCI scores <0.05 [48,49]. The acid denatured state of apo-
myoglobin is considerably more flexible throughout, yielding no
RCI scores <0.10, and likely experiences extensive high amplitude
motions on the millisecond timescale [45]. This data set clearly
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rejecting >3 islands; in magenta: rejecting >2 islands; in red: rejecting all multi-
island predictions. Results are from a self-assessment test on 186 proteins from the
fragment database. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)
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pushes the RCI approach beyond its limits of application but, by
contrast, DANGLE remains able to provide useful insights. It should
be noted that relaxation experiments provide very useful comple-
mentary data for studies of flexible protein states.

3.3. Accuracy and the rejection of ambiguous predictions

The performance of DANGLE was evaluated by analysing chem-
ical shift data for the 186 proteins in the fragment database, using
reference angles from crystal structures. The approach is broadly
successful, generating A30(/) and A30(w) values (percentage of pre-
dictions within 30� of the reference) of 88% and 85%, respectively,
over all cases (see Supplementary Table S5). The two dihedral an-
gles have different chemical shift dependencies, so the A30(/, w)
joint accuracy metric provides a more stringent test, in this case
yielding a value of 80%.

To improve the accuracy of the method, it was important to
identify which estimates are likely to be unreliable. Considering
the four amino acid classes separately reveals that predictions
are significantly more accurate for generic and proline sites, both
producing A30(/, w) values of 82%, than for pre-proline (71%) or
glycine residues (59%). These type-specific effects are correlated
with the proportion of residues that returned GLE plots containing
multiple islands: 16% for generic sites, and 22% for prolines, 24% for
pre-proline residues and 41% for glycines.

Potentially incorrect predictions can therefore be filtered by
systematic exclusion of sites with GLE diagrams that contain more
than a specified number of islands (Supplementary Table S5).
When all estimates derived from multi-island GLE diagrams are
discarded, the proportion of remaining predictions accurate to
within 30� of the reference increases to 88% (Fig. 4A). Across all res-
idue types, application of this filter causes the root mean square
(RMS) error to reduce from 30.7� to 22.1� for / and from 45.8� to
31.4� for w. The improvement for glycine residues is particularly
notable, with the A30(/, w) value increasing from 59% to 76%
(Fig. 4A).

The cost of filtering out multi-island predictions is that 18% of
all estimates are rejected. Glycine and proline residues are fre-
quently found in flexible regions of the protein backbone [50,51],
so it is not surprising that a relatively large portion of these sites
should produce ambiguous predictions, most likely due to the ef-
fects of conformational averaging on chemical shifts. Some well-
structured sites also produce multi-island GLE diagrams due to
accidental degeneracies, as found for Val-181 in the SV40 OBD
(Fig. 2D), so the rejection process is bound to throw away some
valuable facts about conformation. However, for the purpose of
protein structure determination, the most conservative approach
is to avoid introducing false information, making it appropriate
to cull all restraints that are likely to be ambiguous.

Another option would be to recognise that a multi-island GLE
diagram presents information about possible alternative confor-
mations, making it reasonable to consider the use of ambiguous
dihedral angle restraints. Predictions could then be defined as
being accurate if both reference angles appeared within the bound-
ary ranges of any of the islands in the relevant GLE diagram, not
just the principal cluster. In this case, more than 90% of all esti-
mates would be classified as being accurate for both / and w, irre-
spective of the level of filtering (see Supplementary Table S6). The
two dimensional probability distribution provided by a multi-is-
land GLE diagram should prove to be useful input data for inferen-
tial structure determination (ISD) procedures, which are designed
to make best use of uncertain or incomplete information [52].

The Ramachandran space population distributions for post-fil-
ter predictions of / and w (Fig. 1E–H) are somewhat contracted to-
wards the ‘‘most favourable” conformations defined by PROCHECK
[53]. From the viewpoint of the reference structure, however, the
backbone angles of generic residues (Fig. 1I) are seen to be
estimated with high confidence in the a-helix region near
(�65�, �45�), the 310-helix region near (�80�, �30�) and the
b-sheet region near (�135�, +135�). Predictions have medium
reliability when the reference angles are in ‘‘additionally allowed”
portions of the Ramachandran plot, such as the aL-turn region near
(+55�, +45�), but are inaccurate in the ‘‘generously allowed” and
‘‘disallowed” sections [53]. If only single-island estimates are
considered, accurate predictions are generally obtained for all
accessible conformations at the remaining glycine, proline and
pre-proline sites (Fig. 1J–L). The mean RMS error distributions in
Fig. 1M–P demonstrate that all negative values of / are estimated
with high accuracy and precision. In comparison, predictions of w
have low RMS error values only in the most favoured regions and
show medium reliability elsewhere (Fig. 1Q–T).

For DANGLE, the reliability of dihedral angle estimation is not
dictated predominantly by the population of conformations in
the fragment database. For example, the bin centred at
(�65�, �45�) in the a-helix region of Fig. 1I contains information
from 2318 query fragments, while the (�135�, +135�) bin in the
b-sheet region summarises results from only 176 predictions. Both
sets of predictions are highly accurate, giving A30(/, w) values of
99.4% and 97.2%, respectively. This behaviour contrasts with the
secondary structure dependence of the PREDITOR approach, which
reportedly performs better for residues in a- rather than b-struc-
ture [13].
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3.4. Boundaries for dihedral angle predictions

All conformations within an island have significant probability
of producing a scatter pattern that matches the query frequency
matrix. The width of the principal island in the / (or w) dimension
should therefore be related to the uncertainty of the dihedral angle
prediction. An empirical search led us to set upper and lower
boundaries for each dihedral angle based on the maximum width
of the principal island extended by 10� at either side, limiting the
minimum boundary range to 30�. Across all residue types and
when no predictions were discarded, this approach yields values
of 92%, 88% and 84% for Arange(/), Arange(w) and Arange(/, w), respec-
tively (see Supplementary Table S7). When multi-island estimates
are rejected, these accuracy indices increase to 95%, 93% and 91%,
respectively (Fig. 4B).

A major objective for the development of DANGLE was to pro-
vide each prediction with a measure of uncertainty that bears a
realistic relationship to the error in the estimate. After filtering
the list of predictions, the ranges returned for / and w are typically
similar (with mean values of 62 ± 20� and 61 ± 13�, respectively)
and are only weakly dependent on conformation. On average,
boundary ranges are narrower for prolines (51� for / and 56� for
w), but broader for glycines (61� and 64�). Fig. 5 shows clear corre-
lations between the mean deviation of predicted angles from the
reference structure and the boundary ranges selected for / and
w, confirming that a broad range indicates a realistic degree of
uncertainty in the estimate. Outliers are found at the narrowest
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Fig. 5. Scatter plots illustrating the relationship between the boundary range
predicted by DANGLE and the mean deviation of estimates from experimental
reference angles for (A) / (circles) and (B) w (crosses), after filtering out ambiguous
sites. Data points were grouped into 10� bins according to the boundary range and
results for groups that contained <100 predictions are not shown. The solid line
indicates the population frequency of each bin. Results are from a self-assessment
test on 186 proteins from the fragment database.
range (30�) for both dihedral angles (Fig. 5), but these are probably
sampling errors due to infrequent occurrence.

Until recently, ensembles of NMR protein structures had a rep-
utation for being more precise than they were accurate. This prob-
lem has largely been resolved, mainly due to improved structure
calculation procedures, such as a final refinement step with a real-
istic potential in the presence of explicit solvent molecules [28]. To
sustain this improvement, it is important that experimental data
should be applied cautiously, within boundary ranges that are
wide enough to avoid distorting favourable geometries. Our results
show that DANGLE estimates the majority of dihedral angles with
acceptable precision, particularly those in the most favoured and
additionally allowed regions of the Ramachandran plot, and that
these restraints are defined within realistic boundary ranges.

3.5. Referencing errors and systematic absences

Chemical shift measurements may be incorrectly referenced for
varied experimental reasons, such as omitting a suitable internal
reference compound, interactions between reference compounds
and sample constituents, uncompensated Bloch-Siegert shifts, or
secondary isotope shifts in deuterated proteins [26,54–56]. We as-
sessed the impact of systematic referencing errors on the accuracy
of predictions by separately adjusting the shifts of 1H, 15N or all 13C
nuclei for our 29 protein test set. Dihedral angle predictions were
relatively insensitive to 1H referencing errors of up to 0.5 ppm or
15N shift errors 65.0 ppm; by contrast, systematic errors in 13C
shift measurements P0.5 ppm degraded the performance of DAN-
GLE significantly (see Supplementary Figure S5). In part, this sensi-
tivity may be because systematic errors in 13C shifts were
introduced for all Ca, Cb and C0 sites simultaneously, producing a
larger effect than the incorrect referencing of just a single nucleus
type. Nevertheless, our results illustrate the importance of correct
13C referencing for shift-based structure prediction methods.

The consequences of excluding all shift measurements for se-
lected types of nucleus were also investigated, using the 186 protein
entries in the fragment database (see Supplementary Information
for more details). When all predictions are considered, systematic
omission of data for any single type lowers the A30(/, w) index
slightly: by only 0.2% if 1Ha nuclei are ignored; to 3.3% in the absence
of 13Ca shifts. DANGLE is therefore well suited for studies of proteins
that lack 1H shift measurements, for example due to uniform deuter-
ation at methylene and methine sites, or when using 13C-based
detection for solid state experiments. When additional information
is ignored, the accuracy continues to degrade: using only 13Ca shifts
gives an A30(/, w) of 73%, while other single nucleus types produce
values between 65% and 67%. These results suggest that 13Ca shifts
encode the most information about backbone structure and are
key to making predictions that are as accurate as possible.

Once again, the reliability of DANGLE improves considerably
when the output is filtered, even when few nucleus types were ta-
ken into account. For example, the use of only 1Ha data gives an
A30(/, w) accuracy index of 65%. When the fraction of these that
possess GLE diagrams with multiple islands (38%) are excluded,
75% of the remaining estimates are within 30� of the reference
for both / and w. If 15N assignments are also available, the
A30(/, w) index increases to 71% when all predictions are retained,
rising to 77% after multi-island filtering. Some screening protocols
utilise unlabelled or 15N-labelled protein samples; if sequence-spe-
cific assignments are also at hand, DANGLE still has the potential to
be a useful tool.

The algorithm is remarkably successful even when all chemical
shift information is discarded, yielding an A30(/, w) accuracy index
of 54.7%. This level of performance is equivalent to that of the
Real-SPINE 3.0 server (54.6%), which uses a sophisticated two-
layer neural network to predict dihedral angles from the primary
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sequence of a query protein [41]. However, under these conditions,
GLE diagram analysis indicates that 47% of the predictions made by
DANGLE are ambiguous; when these were culled, the A30(/, w) va-
lue for the remaining estimates is boosted to 67.5%. These observa-
tions illustrate the power of the five-residue fragment matching
approach when it is coupled to a filtering procedure.
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Fig. 6. Histograms comparing accuracy indices for various dihedral angle prediction
methods for all residue types. (A) A30(/, w), the percentage of predictions of / and w
both within 30� of their reference angles. (B) Arange(/, w), the percentage of
reference angles that fall within the predicted boundary range for both / and w.
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results classed as ‘‘good” by TALOS+; DANG-A: all results from DANGLE; DANG-B:
all results from DANGLE after rejecting all multi-island predictions. Predictions
were made for the 29 protein test set.
3.6. Comparison with other angle prediction algorithms

Using the test set of 29 proteins, we compared the performance
of DANGLE with shift-based predictions by TALOS [11], TALOS+
[14] and PREDITOR [13] and with sequence-only estimates from
the Real-SPINE 3.0 server [41] (Table 1). To ensure a realistic
field-test, all sites in query proteins were assessed, including
residues in flexible regions or with incomplete chemical shift
sets.

All of the NMR-based methods perform better than the Real-
SPINE 3.0 sequence-only approach (with an A30(/, w) accuracy
index of 55%), confirming that chemical shift measurements do in-
deed convey useful additional information (Fig. 6A). If both ‘‘good”
and ‘‘ambiguous” sites are considered together, the A30(/, w) rating
increases in the order PRED-A (71%) < PRED-B (74%) < DANG-A
(75%) < TALOS-A (76%) < TPLUS-A (77%). Methods that are able
to discard ambiguous predictions are significantly more accurate,
leading to the surprising result that the original implementation
of TALOS performs best: DANG-B (82%) < TPLUS-B (83%) < TA-
LOS-B (86%). The explanation for this becomes apparent on view-
ing Fig. 7, which plots the RMS errors for estimates of / and w
against the degree of completeness, i.e. the percentage of sites at
which predictions are accepted. TALOS-B yields dihedral angle val-
ues with very low errors, but at the expense of making predictions
for only 72% of residues in the query protein. By contrast, TPLUS-B
returns predictions for a larger proportion of sites (85%), but at
lower accuracy. From this perspective, DANG-B produces a good
compromise, offering an RMS error rate close to that of TALOS-B,
but achieving this while approaching the degree of coverage ob-
served for TPLUS-B.

The tiny errors returned by TALOS and TALOS+ reflect details of
the cluster analysis procedure, rather than true confidence inter-
vals, and so are rarely used as realistic upper and lower boundaries
in structure calculations. We therefore also assessed the percent-
age of predictions for which the reference values of both / and w
fall within the stated boundary range (i.e. Arange(/, w)) for the com-
peting methods (Fig. 6B). In this test, both of the DANGLE modes
clearly lead the field. Taken together, these results demonstrate
that the self-guided filtering process implemented in DANGLE
yields dihedral angle predictions that are more realistic than other
Table 1
Accuracy comparison for dihedral angle prediction methods.a

Method A30(/, w)/%b Rejection
level/%

Generic Glycine Proline Pre-
proline

All

Real-SPINE 3.0 56.4 32.0 58.1 43.2 54.5 0.0
PRED-A 73.3 47.2 79.1 58.5 71.4 3.6
PRED-B 74.3 53.8 82.8 79.8 73.5 2.8
TALOS-A 78.3 46.7 78.2 57.7 75.6 2.0
TALOS-B 87.9 79.7 86.6 58.8 86.4 27.7
TPLUS-A 79.6 51.4 83.2 63.8 77.5 3.3
TPLUS-B 84.4 60.5 86.2 64.4 82.6 14.7
DANG-A 76.4 56.4 79.1 63.6 74.8 0.0
DANG-B 82.8 76.5 84.4 69.5 82.1 17.4

a Comparison performed using the test set of 29 proteins.
b Percentage of predictions for which both / and w deviate from their reference

values by less than 30�.
available methods, achieving an optimal balance between accuracy
and completeness within pragmatic, well defined limits.
3.7. Comparison with other secondary structure prediction methods

DANGLE also provides information at lower resolution, assign-
ing each residue of the query protein to one of three secondary
structure states: helix (H), strand (E) or coil (C). Classification of
this sort is a useful step when a new protein system is being char-
acterised: it can guide manual resonance assignment procedures,
as well as facilitating visualisation, fold categorisation, homology
modelling and sequence alignment [57]. A self-assessment test
using the 186 proteins from the fragment database returns the
same secondary structure identification as DSSP [35] in 86% of
cases, rising slightly to 87% when residues with multi-island GLE
diagrams are filtered out. These results fall close to the limit of
88% identified as the maximum achievable value of A3 for ab initio
three-state prediction methods, reflecting the level of discrepancy
encountered when benchmarking different secondary structure
detection algorithms, comparing NMR and X-ray structures of
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identical or homologous proteins, or analysing the variation within
an ensemble of solution structures [57,58].

When alternative shift-based procedures are compared using
the 29 protein test set, most are inferior to state-of-the-art se-
quence-only approaches, represented here by results from the
Jpred3 server [42], which gives an A3 index of 79% (see Table 2
and Fig. 8). Taking chemical shift data into account confers a clear
advantage over Jpred3 for only two methods: PsiCSI (84%); and
DANGLE, which returns 83% when all sites are considered and
85% when ambiguous predictions are discarded. Interestingly,
PsiCSI [6] and TALOS+ [14] both use neural network approaches
to make deductions about secondary structure class, but in our
hands PsiCSI is more successful.

The majority of disagreements between DANGLE and DSSP oc-
cur near protein N- or C-termini (where the backbone is likely to
be flexible), in linker regions that connect elements of regular sec-
ondary structure (where polypeptide chains often sample multiple
conformations), or concern exactly where helices and strands start
or finish (which may be a genuine reflection of protein dynamics,
such as ‘‘fuzzy” helix capping) [58].
Table 2
Accuracy comparison for secondary structure prediction methods.a

A3/%b

Generic Glycine Proline Pre-pro All

Jpred3 78.4 85.1 87.8 86.9 79.3
DCOB 69.5 �c 72.2 68.0 69.6
DCAB 71.7 �c 75.5 79.2 72.0
cCSI 76.4 72.9 72.2 77.8 76.0
PECAN 78.7 74.0 67.0 72.7 77.7
PSSI 80.0 85.1 77.4 71.7 79.9
PsiCSI 83.6 87.8 81.7 87.8 84.2
TPLUS-A 75.6 77.0 80.7 72.0 75.8
TPLUS-B 76.8 78.6 78.8 72.7 76.8
DANG-A 83.2 83.4 87.0 86.9 83.4
DANG-B 84.8 91.3 87.5 84.1 85.2

a Comparison performed using the test set of 29 proteins.
b Percentage of three-state secondary structure predictions that are identical to

the states in the reference structure.
c The DCOB and DCAB methods are not applicable to glycines, which lack Cb

nuclei.
4. Conclusions

This article has introduced DANGLE, a new algorithm that uses
protein chemical shift measurements and a database of high-qual-
ity structures with known shifts to predict backbone / and w dihe-
dral angles and secondary structure states. It employs Bayesian
inferential logic to generate a global likelihood estimate map for
each residue in the query protein, from which robust estimates
of / and w and realistic prediction errors can be derived, along
with an indication of the degeneracy in the relationship between
shift measurements and structure at that site. In addition, each res-
idue is assigned a secondary structure state by assessing the con-
formations of database fragments that possess similar chemical
shifts and amino acid sequence.

At some sites, the measured chemical shifts are not consistent
with a single protein conformation, as might occur in regions that
undergo regular structural rearrangements. Imposing inappropri-
ate shift-based dihedral angle constraints on such regions during
structure calculations would result in an over-restrained ensemble
that did not reflect the true dynamic properties of the polypeptide
chain. We therefore recommend that dihedral angle predictions for
residues with ambiguous, multi-island GLE diagrams should be de-
leted from the restraint list. Used in this mode, DANGLE offers an
ideal compromise between accuracy and coverage when compared
with the competing packages TALOS [11], PREDITOR [12,13] and
TALOS+ [14]. In contrast to these methods, DANGLE outputs a list
of dihedral angle estimates that are defined within realistic bound-
ary ranges, which can therefore be used in conventional structure
calculation protocols without further interpretation. Alternatively,
DANGLE offers GLE diagrams that could be utilised as restraining
probability distributions in inferential structure determination
procedures [52].

In addition to providing a screening method for identifying reli-
able dihedral angle predictions, GLE diagram degeneracy provides
a new tool for investigating the properties of unfolded protein
states, with a sensitivity to residual structure that is different from
the shift-based RCI approach [49]. This property could be investi-
gated further by deriving an expression for the Shannon entropy
[39] from the matrix of posterior probability scores.

Finally, we have shown that DANGLE performs predictions of
secondary structure class in a highly reliable manner, yielding re-
sults that are as accurate as psiCSI [6], the best alternative
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technique. As excluding ambiguous sites has only a small effect on
overall accuracy, we advise that three-state secondary structure
predictions should be performed for every residue in the query
protein.
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